Subspace Identification of Large-Scale 1D Homogeneous Networks

نویسندگان

  • Chengpu Yu
  • Michel Verhaegen
  • Anders Hansson
چکیده

This paper considers the identification of large-scale 1D networks consisting of identical LTI dynamical systems. A new subspace identification method is developed that only uses local input-output information and does not rely on knowledge about the local state interaction. The identification of the local system matrices (up to a similarity transformation) is done via a low dimensional subspace retrieval step that enables the estimation of the Markov parameters of a locally lifted system. Using the estimated Markov parameters, the state-space realization of a single subsystem in the network is determined. The low dimensional subspace retrieval step exploits various key structural properties that are present in the data equation such as a low rank property and a two-layer Toeplitz structure in the data matrices constructed from products of the system matrices. For the estimation of the system matrices of a single subsystem, it is formulated as a structured low-rank matrix factorization problem. The effectiveness of the proposed identification method is demonstrated by a simulation example.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Subspace Identification of Distributed Homogeneous Systems With General Interconnection Patterns

This paper studies the local identification of large-scale homogeneous systems with general network topologies. The considered local system identification problem involves unmeasurable signals between neighboring subsystems. Compared with our previous work in Yu et al. (2014) which solves the local identification of 1D homogeneous systems, the main challenge of this work is how to deal with the...

متن کامل

Subspace Identification of Local 1D Homogeneous Systems

This paper studies the local subspace identification of 1D homogeneous networked systems. The main challenge lies at the unmeasurable interconnection signals between neighboring subsystems. Since there are many unknown inputs to the concerned local system, the corresponding identification problem is semi-blind. To cope with this problem, a nuclear norm optimization based subspace identification...

متن کامل

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

A TWO-STAGE METHOD FOR DAMAGE DETECTION OF LARGE-SCALE STRUCTURES

A novel two-stage algorithm for detection of damages in large-scale structures under static loads is presented. The technique utilizes the vector of response change (VRC) and sensitivities of responses with respect to the elemental damage parameters (RSEs). It is shown that VRC approximately lies in the subspace spanned by RSEs corresponding to the damaged elements. The property is leveraged in...

متن کامل

Solving large systems arising from fractional models by preconditioned methods

This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1702.03539  شماره 

صفحات  -

تاریخ انتشار 2017